Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The two-domain structure of 5'-adenylylsulfate (APS) reductase from Enteromorpha intestinalis is a requirement for efficient APS reductase activity.

Identifieur interne : 000C46 ( Main/Exploration ); précédent : 000C45; suivant : 000C47

The two-domain structure of 5'-adenylylsulfate (APS) reductase from Enteromorpha intestinalis is a requirement for efficient APS reductase activity.

Auteurs : Sung-Kun Kim [États-Unis] ; Varinnia Gomes ; Yu Gao ; Kala Chandramouli ; Michael K. Johnson ; David B. Knaff ; Thomas Leustek

Source :

RBID : pubmed:17209569

Descripteurs français

English descriptors

Abstract

5'-Adenylylsulfate (APS) reductase from Enteromorpha intestinalis (EiAPR) is composed of two domains that function together to reduce APS to sulfite. The carboxyl-terminal domain functions as a glutaredoxin that mediates the transfer of electrons from glutathione to the APS reduction site on the amino-terminal domain. To study the basis for the interdomain interaction, a heterologous system was constructed in which the C domain of EiAPR was fused to the carboxyl terminus of the APS reductase from Pseudomonas aeruginosa (PaAPR), an enzyme that normally uses thioredoxin as an electron donor and is incapable of using glutathione for this function. The hybrid enzyme, which retains the [4Fe-4S] cluster from PaAPR, was found to use both thioredoxin and glutathione as an electron donor for APS reduction. The ability to use glutathione was enhanced by the addition of Na2SO4 to the reaction buffer, a property that the hybrid enzyme shares with EiAPR. When the C domain was added as a separate component, it was much less efficient in conferring PaAPR with the ability to use glutathione as an electron donor, despite the fact that the separately expressed C domain functioned in two activities that are typical for glutaredoxins, hydroxyethyl disulfide reduction and electron donation to ribonucleotide reductase. These results suggest that the physical connection of the reductase and C domain on a single polypeptide is critical for the electron-transfer reaction. Moreover, the effect of Na2SO4 suggests that a water-ordering component of the reaction milieu is critical for the catalytic function of plant-type APS reductases by promoting the interdomain interaction.

DOI: 10.1021/bi0618971
PubMed: 17209569


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The two-domain structure of 5'-adenylylsulfate (APS) reductase from Enteromorpha intestinalis is a requirement for efficient APS reductase activity.</title>
<author>
<name sortKey="Kim, Sung Kun" sort="Kim, Sung Kun" uniqKey="Kim S" first="Sung-Kun" last="Kim">Sung-Kun Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry and Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas 79409-1061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry and Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas 79409-1061</wicri:regionArea>
<wicri:noRegion>Texas 79409-1061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gomes, Varinnia" sort="Gomes, Varinnia" uniqKey="Gomes V" first="Varinnia" last="Gomes">Varinnia Gomes</name>
</author>
<author>
<name sortKey="Gao, Yu" sort="Gao, Yu" uniqKey="Gao Y" first="Yu" last="Gao">Yu Gao</name>
</author>
<author>
<name sortKey="Chandramouli, Kala" sort="Chandramouli, Kala" uniqKey="Chandramouli K" first="Kala" last="Chandramouli">Kala Chandramouli</name>
</author>
<author>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
</author>
<author>
<name sortKey="Knaff, David B" sort="Knaff, David B" uniqKey="Knaff D" first="David B" last="Knaff">David B. Knaff</name>
</author>
<author>
<name sortKey="Leustek, Thomas" sort="Leustek, Thomas" uniqKey="Leustek T" first="Thomas" last="Leustek">Thomas Leustek</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17209569</idno>
<idno type="pmid">17209569</idno>
<idno type="doi">10.1021/bi0618971</idno>
<idno type="wicri:Area/Main/Corpus">000C86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C86</idno>
<idno type="wicri:Area/Main/Curation">000C86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C86</idno>
<idno type="wicri:Area/Main/Exploration">000C86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The two-domain structure of 5'-adenylylsulfate (APS) reductase from Enteromorpha intestinalis is a requirement for efficient APS reductase activity.</title>
<author>
<name sortKey="Kim, Sung Kun" sort="Kim, Sung Kun" uniqKey="Kim S" first="Sung-Kun" last="Kim">Sung-Kun Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry and Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas 79409-1061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry and Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas 79409-1061</wicri:regionArea>
<wicri:noRegion>Texas 79409-1061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gomes, Varinnia" sort="Gomes, Varinnia" uniqKey="Gomes V" first="Varinnia" last="Gomes">Varinnia Gomes</name>
</author>
<author>
<name sortKey="Gao, Yu" sort="Gao, Yu" uniqKey="Gao Y" first="Yu" last="Gao">Yu Gao</name>
</author>
<author>
<name sortKey="Chandramouli, Kala" sort="Chandramouli, Kala" uniqKey="Chandramouli K" first="Kala" last="Chandramouli">Kala Chandramouli</name>
</author>
<author>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
</author>
<author>
<name sortKey="Knaff, David B" sort="Knaff, David B" uniqKey="Knaff D" first="David B" last="Knaff">David B. Knaff</name>
</author>
<author>
<name sortKey="Leustek, Thomas" sort="Leustek, Thomas" uniqKey="Leustek T" first="Thomas" last="Leustek">Thomas Leustek</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algal Proteins (chemistry)</term>
<term>Algal Proteins (genetics)</term>
<term>Algal Proteins (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Base Sequence (MeSH)</term>
<term>DNA, Algal (genetics)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (chemistry)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (genetics)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (metabolism)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Pseudomonas aeruginosa (enzymology)</term>
<term>Pseudomonas aeruginosa (genetics)</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Spectrophotometry (MeSH)</term>
<term>Ulva (enzymology)</term>
<term>Ulva (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>ADN des algues (génétique)</term>
<term>Cinétique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxidoreductases acting on sulfur group donors (composition chimique)</term>
<term>Oxidoreductases acting on sulfur group donors (génétique)</term>
<term>Oxidoreductases acting on sulfur group donors (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines d'algue (composition chimique)</term>
<term>Protéines d'algue (génétique)</term>
<term>Protéines d'algue (métabolisme)</term>
<term>Protéines de fusion recombinantes (composition chimique)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Pseudomonas aeruginosa (enzymologie)</term>
<term>Pseudomonas aeruginosa (génétique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spectrophotométrie (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Ulva (enzymologie)</term>
<term>Ulva (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Algal Proteins</term>
<term>Bacterial Proteins</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Algal Proteins</term>
<term>Bacterial Proteins</term>
<term>DNA, Algal</term>
<term>DNA, Bacterial</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Algal Proteins</term>
<term>Bacterial Proteins</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Protéines bactériennes</term>
<term>Protéines d'algue</term>
<term>Protéines de fusion recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Pseudomonas aeruginosa</term>
<term>Ulva</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Pseudomonas aeruginosa</term>
<term>Ulva</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pseudomonas aeruginosa</term>
<term>Ulva</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>ADN des algues</term>
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Protéines bactériennes</term>
<term>Protéines d'algue</term>
<term>Protéines de fusion recombinantes</term>
<term>Pseudomonas aeruginosa</term>
<term>Ulva</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Protéines bactériennes</term>
<term>Protéines d'algue</term>
<term>Protéines de fusion recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Kinetics</term>
<term>Models, Biological</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Homology, Amino Acid</term>
<term>Spectrophotometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Données de séquences moléculaires</term>
<term>Modèles biologiques</term>
<term>Oxydoréduction</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spectrophotométrie</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">5'-Adenylylsulfate (APS) reductase from Enteromorpha intestinalis (EiAPR) is composed of two domains that function together to reduce APS to sulfite. The carboxyl-terminal domain functions as a glutaredoxin that mediates the transfer of electrons from glutathione to the APS reduction site on the amino-terminal domain. To study the basis for the interdomain interaction, a heterologous system was constructed in which the C domain of EiAPR was fused to the carboxyl terminus of the APS reductase from Pseudomonas aeruginosa (PaAPR), an enzyme that normally uses thioredoxin as an electron donor and is incapable of using glutathione for this function. The hybrid enzyme, which retains the [4Fe-4S] cluster from PaAPR, was found to use both thioredoxin and glutathione as an electron donor for APS reduction. The ability to use glutathione was enhanced by the addition of Na2SO4 to the reaction buffer, a property that the hybrid enzyme shares with EiAPR. When the C domain was added as a separate component, it was much less efficient in conferring PaAPR with the ability to use glutathione as an electron donor, despite the fact that the separately expressed C domain functioned in two activities that are typical for glutaredoxins, hydroxyethyl disulfide reduction and electron donation to ribonucleotide reductase. These results suggest that the physical connection of the reductase and C domain on a single polypeptide is critical for the electron-transfer reaction. Moreover, the effect of Na2SO4 suggests that a water-ordering component of the reaction milieu is critical for the catalytic function of plant-type APS reductases by promoting the interdomain interaction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17209569</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>12</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>46</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2007</Year>
<Month>Jan</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>The two-domain structure of 5'-adenylylsulfate (APS) reductase from Enteromorpha intestinalis is a requirement for efficient APS reductase activity.</ArticleTitle>
<Pagination>
<MedlinePgn>591-601</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>5'-Adenylylsulfate (APS) reductase from Enteromorpha intestinalis (EiAPR) is composed of two domains that function together to reduce APS to sulfite. The carboxyl-terminal domain functions as a glutaredoxin that mediates the transfer of electrons from glutathione to the APS reduction site on the amino-terminal domain. To study the basis for the interdomain interaction, a heterologous system was constructed in which the C domain of EiAPR was fused to the carboxyl terminus of the APS reductase from Pseudomonas aeruginosa (PaAPR), an enzyme that normally uses thioredoxin as an electron donor and is incapable of using glutathione for this function. The hybrid enzyme, which retains the [4Fe-4S] cluster from PaAPR, was found to use both thioredoxin and glutathione as an electron donor for APS reduction. The ability to use glutathione was enhanced by the addition of Na2SO4 to the reaction buffer, a property that the hybrid enzyme shares with EiAPR. When the C domain was added as a separate component, it was much less efficient in conferring PaAPR with the ability to use glutathione as an electron donor, despite the fact that the separately expressed C domain functioned in two activities that are typical for glutaredoxins, hydroxyethyl disulfide reduction and electron donation to ribonucleotide reductase. These results suggest that the physical connection of the reductase and C domain on a single polypeptide is critical for the electron-transfer reaction. Moreover, the effect of Na2SO4 suggests that a water-ordering component of the reaction milieu is critical for the catalytic function of plant-type APS reductases by promoting the interdomain interaction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Sung-Kun</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry and Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas 79409-1061, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gomes</LastName>
<ForeName>Varinnia</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chandramouli</LastName>
<ForeName>Kala</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Michael K</ForeName>
<Initials>MK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Knaff</LastName>
<ForeName>David B</ForeName>
<Initials>DB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leustek</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM62542</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020418">Algal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048028">DNA, Algal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.-</RegistryNumber>
<NameOfSubstance UI="D050862">Oxidoreductases Acting on Sulfur Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.99.2</RegistryNumber>
<NameOfSubstance UI="C019618">adenylylsulfate reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020418" MajorTopicYN="N">Algal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048028" MajorTopicYN="N">DNA, Algal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050862" MajorTopicYN="N">Oxidoreductases Acting on Sulfur Group Donors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011550" MajorTopicYN="N">Pseudomonas aeruginosa</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013053" MajorTopicYN="N">Spectrophotometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044445" MajorTopicYN="N">Ulva</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17209569</ArticleId>
<ArticleId IdType="doi">10.1021/bi0618971</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chandramouli, Kala" sort="Chandramouli, Kala" uniqKey="Chandramouli K" first="Kala" last="Chandramouli">Kala Chandramouli</name>
<name sortKey="Gao, Yu" sort="Gao, Yu" uniqKey="Gao Y" first="Yu" last="Gao">Yu Gao</name>
<name sortKey="Gomes, Varinnia" sort="Gomes, Varinnia" uniqKey="Gomes V" first="Varinnia" last="Gomes">Varinnia Gomes</name>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
<name sortKey="Knaff, David B" sort="Knaff, David B" uniqKey="Knaff D" first="David B" last="Knaff">David B. Knaff</name>
<name sortKey="Leustek, Thomas" sort="Leustek, Thomas" uniqKey="Leustek T" first="Thomas" last="Leustek">Thomas Leustek</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Kim, Sung Kun" sort="Kim, Sung Kun" uniqKey="Kim S" first="Sung-Kun" last="Kim">Sung-Kun Kim</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C46 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C46 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17209569
   |texte=   The two-domain structure of 5'-adenylylsulfate (APS) reductase from Enteromorpha intestinalis is a requirement for efficient APS reductase activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17209569" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020